Bac 2015-Maths-S-Specialite
15MASCSMLR1 BACCALAUREAT GENERAL Session 2015 MATHEMATIQUES Série S ÉPREUVE DU LUNDI 22 JUIN 2015 Enseignement SpécialitéCoefficient : 9 Durée de l’épreuve: 4 heures Ce sujet comporte 8 pages numérotées de 1 à 8. Les calculatrices électroniques de poche sont autorisées, conformément à la réglementation en vigueur. Le sujet est composé de 4 exercices indépendants. Le candidat doit traiter tous les exercices. Le candidat est invité à faire figurer sur la copie toute trace de recherche, même incomplète ou nonfructueuse, qu’il aura développée. Il est rappelé que la qualité de la rédaction, la clarté et la précision des raisonnements seront prises en comptedans l’appréciation des copies. 1/8 15MASCSMLR1 Exercice 1 (6 points) Commun à tous les candidats 3 Les résultats des probabilités seront arrondis à10près. Partie 1 1. SoitX une variable aléatoire qui suit la loi exponentielle de paramètre , où un réel est strictement positif donné. On rappelle que la densité de probabilité de cette loi est la fonctionf définie sur0 ; par x f(x)e. a. Soitcetddeux réels tels que0cd. c d Démontrer que la probabilitéP(cXd)vérifieP(cXd)ee. 3 b. Déterminer une valeur deà10près de telle sorte que la probabilitéP(X20)soit égale à 0,05. c. Donner l’espérance de la variable aléatoireX. Dans la suite de l'exercice on prend0,15. d. CalculerP(10X20). e.